摘要
为建立精确有效的垃圾发电厂焚烧过程多输入多输出模型,提出一种改进麻雀算法(ISSA)与极限学习机(ELM)相结合的垃圾发电厂焚烧过程建模方法。首先,选择变量,并基于滑动窗口筛选稳定数据;其次,采用ISSA对ELM的输入层权重和隐含层偏置进行优化,以消除输入层权重和隐藏层偏置随机选取对模型稳定性的影响;最后,将ISSA-ELM模型与传统反向传播(BP)神经网络、ELM模型、麻雀算法-极限学习机(SSA-ELM)模型进行比较。结果表明:基于ISSA-ELM的垃圾发电厂焚烧过程模型相比于BP神经网络、ELM模型、SSA-ELM模型更加精确有效,可为操作人员提供最佳操作变量以调整焚烧工况。
- 单位