基于ISSA-ELM的垃圾发电厂焚烧过程建模方法研究

作者:赵征; 王金; 周孜钰; 李倬舸; 魏强
来源:动力工程学报, 2023, 43(12): 1649-1656.
DOI:10.19805/j.cnki.jcspe.2023.12.015

摘要

为建立精确有效的垃圾发电厂焚烧过程多输入多输出模型,提出一种改进麻雀算法(ISSA)与极限学习机(ELM)相结合的垃圾发电厂焚烧过程建模方法。首先,选择变量,并基于滑动窗口筛选稳定数据;其次,采用ISSA对ELM的输入层权重和隐含层偏置进行优化,以消除输入层权重和隐藏层偏置随机选取对模型稳定性的影响;最后,将ISSA-ELM模型与传统反向传播(BP)神经网络、ELM模型、麻雀算法-极限学习机(SSA-ELM)模型进行比较。结果表明:基于ISSA-ELM的垃圾发电厂焚烧过程模型相比于BP神经网络、ELM模型、SSA-ELM模型更加精确有效,可为操作人员提供最佳操作变量以调整焚烧工况。

全文