K-Means算法是比较流行的局域聚类算法,但由于其存在需要输入聚类数目以及对初始聚类中心敏感等缺陷,本文提出了一种基于密度的加权K-Means聚类算法来初始化聚类中心。该算法定义了点的密度函数和聚类中心函数,通过一定评价函数获取聚类中心。该方法获取的聚类中心不仅周围密度比较大,而且各个聚类中心之间相关性比较小,从而有效的减少了聚类时间,提高算法效率。