摘要

针对现有端对端模型没有对问句局部信息进行显式建模以及模型可解释性差等方面的不足,本文提出面向开放域的基于注意力机制和双向LSTM的问句分类方法。该法一方面使用注意力机制捕捉问句的局部信息;另一方面将注意力机制视为一种模型内置的自解释机制,将其与双向LSTM结合完成对问句局部和全局信息的建模。在TREC、MSQC、Baidu-Zhidao、Baidu-Search四个公开的开放域问句分类数据集上的实验结果表明,本文提出的方法在分类性上优于现有的基准方法,而且该方法的注意力机制能捕捉到问句分类的关键局部信息,提高模型的可解释性,为下游任务提供除类别以外的关键信息。