摘要

Five groups of SBR reactors operating in anaerobic, aerobic, anoxic(AOA) mode were used to investigate the transformation rules of phosphorus morphology and sludge characteristics of AOA-SBR system under different C/P(120, 40, 24, 17, 13). The results showed that the removal effect of COD, TN and NH4+-N all outperformed the primary A standard. As the C/P decreased, the system TP removal gradually increased. When the C/P was less than 24, the removal effect of the TP began to deteriorate and fluctuate violently. When the C/P was 40, the system was the most stable, with an average removal rate of 99.22%. The results showed that with the decrease of C/P, the phosphorus forms in the sludge increased. IP was the main phosphorus form of TP, and IP was similar under different C/P (about 96%). As C/P decreased, the content of sludge TP and IP decreased, while OP content of sludge TP maintained a downward trend. Biological effective phosphorus (the sum of NAIP and OP) had the greatest impact on sewage phosphorus removal effect, with the highest proportion of bioeffective phosphorus in the sludge with C/P 40, and the best sewage TP removal effect. MLSS and SVI increased with C/P, while the risk of sludge expansion the lower C/P systems. High-throughput sequencing showed that with the decrease of C/P, both PAOs and DPB content decreased except for Dechloromonas, and the sewage TP removal effect was poor and fluctuated greatly.