摘要

案件要素识别指将案件描述中重要事实描述自动抽取出来,并根据领域专家设计的要素体系进行分类,是智慧司法领域的重要研究内容。基于传统神经网络的文本编码难以提取深层次特征,基于阈值的多标签分类难以捕获标签间的依赖关系,因此该文提出了基于预训练语言模型的多标签文本分类模型。该模型采用以Layer-attentive策略进行特征融合的语言模型作为编码器,使用基于LSTM的序列生成模型作为解码器。在"CAIL2019"数据集上进行实验,该方法比基于循环神经网络的算法在F1值上平均可提升7.4%,在相同超参数设置下宏平均F1值比基础语言模型(BERT)平均提升3.2%。