摘要

为了提高大数据背景下离群点检测方法的准确性和时效性,深入研究并分析了聚类算法的特征,提出了一种基于网格局部异常因子(LOF)算法和自适应K-means算法的改进型离群点检测聚类算法。先对大数据信息使用网格LOF算法进行预处理,过滤掉数据中孤立的离群点,再用自适应K-means算法精确地进行离群点检测。最后,试验结果表明,该算法相比于同类离群点检测算法节约了检测运行时间,并提高了检测准确度,对大数据集和高维数据也有较理想的离群点检测效果。

  • 单位
    中国电子科技集团公司第二十八研究所