摘要
鉴于手写识别在当今社会的重要性,文章利用加州大学的开放数据集“数据库标题:手写数字的光学识别”进行前瞻性分析,希望为以后的研究提供参考。首先,利用K-means聚类算法建立模型对不同组的手写数字进行聚类,并采用ARI和Silhouette系数等两种聚类质量方法对聚类效果进行评价,验证聚类结果的真实性和可靠性。最终的实验结果也证实了K-means算法在处理此类数据时具有相对稳定的效果。如果样本量能够不断增加,特征点提取并可以形成多维矩阵,则K-means算法会取得更好的效果。
-
单位阜阳师范大学