摘要

地上生物量(above-ground biomass, AGB)是评价作物长势及其产量估测的重要指标,对指导农业管理具有重要的作用。因此,快速准确地获取生物量信息,对于监测马铃薯生长状况,提高产量具有重要的意义。于马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期、成熟期获取成像高光谱影像、实测株高(heigh,H)、地上生物量和地面控制点(ground control point, GCP)的三维空间坐标。首先基于无人机高光谱灰度影像结合GCP生成试验田的DSM(digital surface model, DSM),利用DSM提取马铃薯的株高(Hdsm);然后利用无人机高光谱影像计算一阶微分光谱、植被指数和绿边参数,进而分析高光谱特征参数(hyperspectral characteristic parameters, HCPs)和绿边参数(green edge parameters, GEPs)与马铃薯AGB的相关性,每个生育期筛选出相关性较高的前7个高光谱特征参数和最优绿边参数(optimal green edge parameters, OGEPs);最后基于HCPs, HCPs加入OGEPs, HCPs加入OGEPs和Hdsm的组合利用偏最小二乘回归(partial least square regression, PLSR)和随机森林(random forest, RF)估算不同生育期的AGB。结果表明:(1)提取的Hdsm与实测株高H高度拟合(R2=0.84, RMSE=6.85 cm, NRMSE=15.67%);(2)每个生育期得到的最优绿边参数不完全相同,现蕾期、块茎增长期和淀粉积累期OGEPs为Rsum,块茎形成期和成熟期OGEPs分别为Drmin和SDr;(3)与仅使用HCPs估算AGB相比,使用HCPs加入OGEPs, HCPs加入OGEPs和Hdsm在马铃薯不同生育期可以提高AGB估算精度,且以后者为自变量提高精度的幅度更大;(4)每个生育期利用PLSR和RF估算AGB的建模和验证R2从现蕾期到块茎增长期呈上升趋势,随后开始降低,整体上R2呈先上升后下降的趋势,通过PLSR方法构建的估算AGB模型效果优于RF方法,其中块茎增长期表现效果最好。因此,高光谱特征参数中结合最优绿边参数和株高,并使用PLSR方法可以改善马铃薯AGB的估算效果。