摘要
全球气候模式(global climate models,GCMs)数量众多,各有优劣,对降水量而言往往难以确定出一个最优模式,所以当将其输出用于水文长期预估时,通常需对各模式数据进行集成,以发挥不同模式的优势,提升水文预估的整体精度。采用Vine Copula构建GCMs与实测降雨的多维联合分布函数,并推求给定GCMs数据条件下实测降雨量的条件分布,再由该条件分布实现多维数据的综合。以淮河王家坝以上流域6个GCMs降雨数据的综合为例进行应用研究,并与贝叶斯模型平均和多元分位数回归2种多变量集成方法进行比较。结果表明,基于Vine Copula的多模式集成结果优于任意原始单模式,且具有整体最优的集成效果,为GCMs在水文中的应用提供了一种途径。
- 单位