摘要

采用最优拉丁超立方试验设计法细化涡流发生器参数,确定试验方案,仿真计算风力机的推力和转矩,获得试验数据.基于反向传播(BP)神经网络,构建遗传算法优化BP神经网络的风力机涡流发生器气动性能模型,通过计算气动性能模型预测值与仿真值的误差与均方根,验证气动性能模型的可靠性;耦合鱼群算法和风力机涡流发生器气动性能模型,建立风力机涡流发生器优化方法,对涡流发生器高度、长度和安装角度进行迭代求解,实现涡流发生器优化.结果表明:相比原涡流发生器方案,涡流发生器优化后的风力机叶片截面流动分离得到有效抑制和延迟,表面流体分离现象得到改善,风力机功率提升1.711%,推力下降0.875%.

全文