摘要

为实现晶圆表面缺陷的无监督检测,提出了一种改进生成对抗网络的无监督晶圆表面缺陷检测模型,该模型通过目标图像与重构图像之间的差异来检测缺陷。该方法使用带有两层跳跃连接和记忆模块的编码器-解码器卷积神经网络来搭建生成器,跳跃连接用以捕获多尺度的输入图像特征,记忆模块对潜在特征实施约束,扩大真实缺陷样本与重构样本间的距离。该方法还通过改进判别器网络结构,使模型轻量化。实验结果表明,该模型能够准确分辨具有缺陷的晶圆样本,ROC曲线下的面积值达到0.934,与已有的无监督学习检测方法相比性能更优,同时判别器网络的参数量和计算量分别降低到1 M和60 M以下。

全文