摘要
利用可见近红外(Vis-NIR)高光谱成像技术对完好和损伤等级灵武长枣进行快速识别检测。采用定量损伤装置得到损伤Ⅰ,Ⅱ,Ⅲ,Ⅳ和Ⅴ级的灵武长枣,借助高光谱成像系统采集完好长枣和损伤长枣样本高光谱图像。提取感兴趣区域(region of interest,ROI)并计算样本平均光谱值。利用光谱-理化值共生距离算法(SPXY)将420个长枣样本按3∶1的比例划分校正集315个和预测集105个。灵武长枣原始光谱建立偏最小二乘判别分析(PLS-DA)分类模型,得到校正集和预测集准确率分别为72.70%和86.67%;灵武长枣原始光谱数据采用移动平均(MA)、卷积平滑(SG)、多元散射校正(MSC)、正交信号修正(OSC)、基线校准(baseline)和去趋势(de-trending)等方法进行光谱预处理并建立PLS-DA分类判别模型。通过分析比较,得到MSC-PLS-DA为最优分类判别模型,校正集准确率为76.19%,预测集准确率为86.67%,其中校正集比原始光谱建模准确率提高了3.49%,预测集准确率较原始光谱建模结果未提高;为了提高建模效果,对灵武长枣原始光谱和预处理后的光谱分别采用连续投影算法(SPA)、无信息变量消除(UVE)、竞争性自适应加权抽样(CARS)和区间变量迭代空间收缩法(iVISSA)等算法提取特征波长,建立PLS-DA分类判别模型,结果表明,MSC-CARS-PLS-DA为最优模型组合,校正集准确率为77.14%,预测集准确率为89.52%,建模准确率较原始光谱建模准确率分别提高了4.44%和2.85%。结果表明,Vis-NIR高光谱成像技术结合MSC-CARS-PLS-DA模型可实现灵武长枣损伤等级的快速识别。
- 单位