摘要

针对国内外化妆品风险物质多语言特性和复杂关联的特点,提出一种基于双通道图神经网络的邻域匹配算法。采用图神经网络学习实体属性特征和跨域交互特性,将不同特性实体映射到相同的向量空间,通过邻域匹配网络聚合实体邻域特征,为每个实体构建邻域网络以实现实体对齐,并应用于多语言风险物质知识图谱及问答系统构建。实验结果表明,在化妆品风险物质数据集上该方法获得的Hits@1、Hits@10与MRR值都优于其它基线模型,分别平均提升6.37%、8.17%与9.37%。

全文