摘要

青叶胆(Swertia leducii)为獐牙菜属(Swertia)一年生草本植物,在肝炎病治疗方面效果显著。其与同属近似种外观极其相似,加之常以干燥全草入药,仅从形态难以正确鉴别。不同物种有效成分存在明显差异,其药效也有所不同。基于光谱和色谱数据融合建立青叶胆及近似种的鉴别方法,为青叶胆药用真实性与安全性提供科学依据。采集青叶胆及其近似种植物共102份样品的傅里叶变换红外光谱(FTIR)和超高效液相色谱(UPLC)指纹图谱;利用标准正态变量(SNV)、多元散射校正(MSC)、 Savitzky-Golay平滑(SG)、一阶导数(1D)、二阶导数(2D)等方法对原始红外光谱数据进行预处理,通过系统聚类分析(HCA)探讨獐牙菜属不同种类样品化学信息相似性与差异性; Kennard-Stone算法将所有样品按2∶1比例划分为训练集和预测集,训练集基于FTIR, UPLC,低级与中级数据融合建立随机森林(RF)判别模型,预测集用于验证模型预测能力,其中灵敏性(sensitivity)、特异性(specificity)、精密度(precision)和正确率(accuracy)用来评价模型性能。结果显示:(1)采用SNV+SG+2D组合对FTIR数据进行预处理,R2Y和Q2最大,分别为91.2%和84.1%,所有类别被正确区分,为最佳预处理。(2)HCA反映了5种獐牙菜属植物样品分类情况与亲缘关系,除紫红獐牙菜外,其余4种獐牙菜植物均分类正确,准确率为93.1%;青叶胆、川东獐牙菜、紫红獐牙菜与西南獐牙菜亲缘关系较近。(3)基于FTIR、 UPLC、低级和中级数据融合策略建立RF判别模型,样品错判总数分别为1, 5, 1和0,中级数据融合效果最佳,所有样品均正确分类,所建模型性能良好。FTIR与UPLC通过中级数据融合策略结合RF判别分析能正确鉴别不同种类獐牙菜属植物,结合HCA分析能够明确青叶胆及其近似种之间的亲缘关系,为獐牙菜属植物资源开发与质量控制提供理论基础。

  • 单位
    吉首大学; 云南省农业科学院药用植物研究所