摘要
针对结构设计不合理的卷积神经网络导致MNIST识别的准确率低、收敛速度慢和训练参数多等问题,提出卷积神经网络结构的改进模型。改进的模型采用2次卷积、2次池化和3次全连接、采用Relu激活函数和Softmax回顾函数相结合,加入Dropout层防止过拟合,加入Flatten层优化结构。为了缩减代码量,采用API功能强大的Keras模型替代Tensorflow。对MNIST的训练集和测试集数据的准确率进行仿真实验,实验结果表明:采用改进的结构在MNIST的训练中不仅收敛速度快、训练参数少、损失率低,而且在测试集上的准确率达到99.54%、高于改进前的99.25%,对后续手写数字的研究具有重要意义。
-
单位山西农业大学信息学院