摘要

针对大型煤矿中的露天移动机器人自主行走问题,应用基于卡尔曼滤波的SLAM算法,研究了移动机器在不携带惯性导航设备,也无先验地图的情况下,通过自身携带的传感器与环境特征量进行应答式通信,建立环境地图,并利用该地图计算自身位置,从而实现自主导航与定位。仿真结果显示,SLAM算法的定位误差保持在±1 m以内,速度误差保持在±0.2 m/s以内,对环境特征量的定位误差随着机器人的移动逐渐减小,最终保持在±2 m以内。同时,通过对不同距离量测噪声与速度量测噪声的情况也进行了分析。仿真结果显示,当保持距离量测噪声不变,增大速度量测噪声时,或保持速度量测噪声不变,增大距离量测噪声时,SLAM算法的定位精度均会下降。研究表明,基于卡尔曼滤波的SLAM算法很好地控制了移动机器人在未知环境中的定位误差,保证了机器人的定位精度。