摘要
氘氚聚变反应被认为是能够最先实现商业发电的聚变反应,但氚的使用也带来了放射性安全问题。为探究适用于聚变堆事故后的大气释放氚源项反演的计算方法,本研究将自适应卡尔曼滤波与深度前馈神经网络相结合,建立聚变堆事故后的氚释放源项估计算法,对氚的释放高度及释放率进行反演。对神经网络使用滤波前后的观测值作为输入数据时的预测源强进行分析。结果表明,滤波能有效降低神经网络的预测误差。当监测数据误差为20%时,释放高度反演相对误差均值约为3%,释放率反演相对误差均值约为4%。
-
单位核工业西南物理研究院