摘要
目的研究语音识别网络模型在声学信息中的表征能力,并对方言自动分类应用进行最优单模型筛选。方法使用python仿真实现SOM、RNN、LSTM与CNN模型,并选择合适的分类器进行方言分类任务的训练与分类验证实验。结果实验结果显示,多分类评价指标PRF条件下,LSTM模型取得了宏平均和微平均的最优评价得分。同时CNN模型则在低信噪比条件下显示了较好的抗噪鲁棒性。结论 LSTM+CNN框架下方言信息表征能力较好且兼具强鲁棒性,可满足方言自动分类任务的二次开发应用。
-
单位江苏警官学院