摘要
研究了如何将协同过滤推荐应用于IT项目外包平台,实现个性化任务推荐,提出了1种融合用户Profile文本相似度、任务选择相似度及任务紧要度的协同推荐方法.该方法将用户对任务的选择行为转换为用户-任务类选择矩阵,并以此计算用户间的选择相似性;用户profile文本相似性用于平衡用户选择相似性并形成用户综合相似性,算法中任务紧要度用于度量任务的时限性与经济性,设置合适的阈值来构建待推荐任务集.在真实数据集上的实验结果表明,提出的个性化推荐方法具有较高的推荐准确度,并在一定程度上缓解冷启动与数据稀疏性问题.
- 单位