摘要

在线教育存在"信息迷航"问题,而传统的信息推荐方法往往忽视教育的主体—学习者的特征。本文依据教育教学理论,根据在线教育平台中的学习者相关数据,研究构建了适用于在线学习资源个性化推荐的学习者模型。以协同过滤推荐方法为切入点,融合学习者模型中的静态特征和动态特征对协同过滤方法进行改进,建立融入学习者模型的在线学习资源协同过滤推荐方法。以2020年3~7月时间段的东北石油大学"C程序设计"课程学生的真实学习数据和行为数据为数据集,对本文提出的方法进行验证和对比,最后证明本文提出的方法在性能上均优于对比方法。