摘要

针对现有人工智能预测方法在旋转机械状态退化趋势预测中存在预测精度较差、计算效率较低等缺点,提出基于双隐层量子线路循环单元神经网络(Double hidden layer quantum circuit recurrent unit neural network,DHL-QCRUNN)的旋转机械状态退化趋势预测方法。首先采用量纲一化排列熵误差构建状态退化特征集,然后将该特征集输入DHL-QCRUNN以完成旋转机械状态退化趋势预测。在所提出的DHL-QCRUNN中,设计双隐层结构以提高网络的非线性映射能力;并引入量子相移门和多位受控非门以实现信息的传递;通过双隐层的量子反馈机制获得输入序列的整体记忆;最后采用输出层激发态的概率幅表示输出,通过以上方法改善了网络的非线性逼近能力和泛化性能,使所提出的旋转机械状态退化趋势预测方法具有较高的预测精度。此外,通过量子Levenberg-Marqudt(LM)算法更新DHL-QCRUNN的网络参数,提高该网络的收敛速度,使所提出的状态退化趋势预测方法具有较高计算效率。滚动轴承状态退化趋势预测实例验证了该方法的有效性。提出了基于DHL-QCRUNN的旋转机械状态退化趋势预测新方法,该方法具有较高的预测精度和较高的计算效率。