摘要

为了判别微表情种类,提出基于深度卷积神经网络和迁移学习的微表情种类判别网络MecNet.为了提高MecNet在CASME Ⅱ、SMIC和SAMM联合数据库上的微表情种类判别准确率,提出基于自编码器的微表情生成网络MegNet,以扩充训练集.使用CASME Ⅱ亚洲人的微表情样本,生成欧美人的微表情样本.设计卷积结构实现图像编码,设计基于子像素卷积的特征图上采样模块实现图像解码,设计基于图像结构相似性的损失函数用于网络优化.将生成的欧美人的微表情样本加入MecNet训练集.实验结果表明,使用MegNet扩充训练集能够有效地提高MecNet微表情种类判别准确率.结合MegNet、MecNet的算法在CASME Ⅱ、SMIC和SAMM组成的联合数据库上的表现优于大部分现有算法.