摘要

针对传统风洞试验、数值模拟等方法计算噪声值费时长、资源消耗大等问题,提出一种基于机器学习的气动噪声预测方法。以后视镜特征参数为数据集输入,对不同特征参数下的后视镜模型进行瞬态流场与声场联合仿真,将计算得到的总声压级值作为数据集输出,分别用不同数量的样本数据训练支持向量回归机,通过建立的预测模型对同一测试集进行预测得到总声压级预测值。结果表明,基于支持向量回归机的预测方法能得到与计算值误差较小的预测结果,在较少样本数据支撑下也具有较高的预测精度,可用于汽车后视镜气动噪声的预测。

  • 单位
    武汉理工大学; 湖北省齐星汽车车身股份有限公司; 现代汽车零部件技术湖北省重点实验室