基于FCM-ELM-BBPS的预测控制参数整定

作者:贺宁; 习坤*; 高峰; 刘月笙
来源:湖南大学学报(自然科学版), 2023, 50(12): 168-177.
DOI:10.16339/j.cnki.hdxbzkb.2023190

摘要

模型预测控制设计参数选择显著影响被控系统性能,目前基于专家经验的主流参数整定方法会出现控制器鲁棒性差、计算成本高等缺点.为了解决上述问题,提出一种基于模糊C均值-极限学习机-裸骨粒子群(Fuzzy C-means-Extreme Learning Machine-Bare Bones Particle Swarm, FCM-ELM-BBPS)的参数整定算法.通过模糊C均值算法(Fuzzy C-means, FCM)聚类进行数据预处理,将被控系统复杂数据根据自身特征进行聚类,以降低神经网络的训练误差,提高预测精度;针对每一类特征数据,利用极限学习机(Extreme Learning Machine, ELM)建立预测控制参数与性能指标的映射关系模型,并进一步获得参数整定规则;采用裸骨粒子群(Bare Bones Particle Swarm, BBPS)优化算法进行预测控制参数整定,通过采用高斯分布来更新粒子位置,加快目标函数的收敛速度,从而有效地减少参数寻优时间;分别进行仿真和水箱系统实验验证,证明了提出算法的有效性.实验结果表明,本文提出的算法与现有方法相比,更具有优越性,其中整定时间减少了34.84%,同时在调整时间等时域性能指标上提升了43.98%.

全文