摘要
针对现有机车轴承诊断方法存在故障特征提取不理想、诊断精度低等问题,提出了一种基于深度时频特征的机车轴承故障诊断新方法;利用双通道一维和二维卷积神经网络(CNN)分别对输入的一维原始信号和连续小波变换(CWT)提取的二维时频信号进行深度特征提取;为使输入的一维原始信号简单而有效地反映出信号在时域的全局特征,上通道使用一维CNN,为使输入的二维时频域信号能多角度地反映出信号的细微局部变化,下通道使用二维CNN;在融合层中将上下通道特征自动融合成一个新的深度时频特征,并将提取到的深度融合时频特征经归一化指数函数进行故障分类识别;在此基础上,分析了某局机务段实测的7种机车轴承数据,验证了本文方法的实际工程应用价值。研究结果表明:基于深度时频特征的机车轴承故障诊断方法对7种机车轴承故障的平均诊断精度达到了100%,与一维CNN模型、二维CNN模型和支持向量机(SVM)模型相比,平均诊断精度分别提高了0.7%、1.9%和2.2%;本文方法提取的深度时频特征中每类故障分布间隔规则有序,类内间距很小,而单个一维CNN模型和二维CNN模型提取的特征的每类故障分布间隔不规则,类内间距较大,说明基于深度时频特征的机车轴承故障诊断方法提取深度特征的能力优越,是一种解决机车轴承故障诊断问题的有效模型。
-
单位华东交通大学机电与车辆工程学院; 中车戚墅堰机车有限公司