摘要
在装备试验与测试中,常规光学成像系统极易受气象环境(如雾霾、沙尘等)影响,导致探测距离、成像效果、测量精度等受到大幅限制,从而严重影响目标成像效果及关键参数获取。如何增强雾霾条件下光学探测识别能力及成像质量,成为了当前急需解决的关键问题。本文利用偏振成像优势,结合暗通道先验原理,提出了基于暗通道先验原理的偏振图像去雾增强算法。该算法首先利用采集到的偏振图像提取偏振特征,计算偏振度和偏振角;同时,采用基于区域增长算法自动提取出天空区域,对天空区域进行大气光参数估计,获取大气光偏振度及偏振角相关参数估计;然后,结合暗通道先验原理,获取无穷远处大气光强,进而计算各像素点的大气光强;最后,建立在大气物理退化模型基础上,实现图像去雾增强。实例分析与验证中,通过主观评价与客观评价两种方法,对比本文提出的方法和常见其他方法,实际结果表明,本文算法去雾增强能力较强,能有效提升光学系统的探测识别能力及成像质量,对雾霾条件下武器装备关键参数获取具有重要意义。