摘要

为解决风机轴承故障诊断问题,全面提取轴承运行状态的特征信息,提出了基于NLMS与WP相融合的特征提取及神经网络相适配的故障诊断方法。首先采用自适应滤波器对故障信号进行滤波去噪,再利用小波包对信号进行分解重构并提取其能量特征,将小波包各个频段的能量比系数作为风机轴承的故障特征,并通过改进的神经网络模型分类识别轴承的故障信号,实现不同类型的轴承故障诊断。试验结果表明,该方法弥补了传统故障诊断方法的不足,提高了故障类型识别率和故障诊断准确率,诊断效果良好。