摘要

针对卫星陀螺仪故障检测中存在的冗余依赖、微小故障覆盖问题,提出一种基于长短时神经网络(LSTM)的故障检测方法。首先对卫星陀螺仪建模,考虑到卫星姿态控制回路对陀螺仪微小故障覆盖影响,利用半物理仿真平台采集陀螺仪正常与故障数据;然后使用部分正常数据训练LSTM神经网络,使得网络具有预测陀螺仪输出的能力,并将另一部分正常数据输入到训练好的网络模型,得到预测误差,进一步设定故障阈值;最后,将测试数据输入提出的故障检测模型,仿真验证其时效性和准确性。结果表明,在采样频率为10Hz时,对于陀螺仪的卡死、噪声以及偏差故障,基于LSTM神经网络的故障检测模型能在故障发生2s内检测出故障,并达到了98.9%的准确率。

全文