摘要

手机信令具有时空序列性以及数据量大、采样频率不均、定位精度低与基站振荡等特点,导致传统手机信令聚类方法数据密度分布不均、时空开销大且聚类效果差。提出一种用于手机信令的时空密度轨迹点识别算法。将手机信令数据网格化以统一评估尺度,根据振荡噪声特征对网格簇进行时空联结减少空间不确定性和计算量,结合网络轨迹的曲折性以及移动与停留时间重新定义网格簇内轨迹点时空移动能力,计算网格簇的时空密度以判断用户停留区域,并采集具有移动停留标签的轨迹数据以验证算法有效性和识别效率。实验结果表明,该算法识别精度较改进DBSCAN算法更高,适用于识别手机信令数据停留区域,对复杂轨迹停留区域的识别效果更好。

全文