摘要
恶意代码识别对保护计算机使用者的隐私、优化计算资源具有积极意义。现存恶意代码识别模型通常会将恶意代码转换为图像,再通过深度学习技术对图像进行分类。经恶意代码识别模型转换后的图像呈现两个特点,一是图像的末尾通常被填充上黑色像素,使图像中存在明显的重点特征(即代码部分)和非重点特征(即填充部分),二是代码之间具有语义特征相关性,而在将它们按顺序转换成像素时,这种相关性也在像素之间保留。然而,现有恶意代码检测模型没有针对恶意代码的特点设计,这导致对恶意图像在深层次特征提取方面的能力相对偏弱。鉴于此,文章提出了一种新的恶意代码检测模型,特别针对恶意图像的两个关键特点进行了设计。首先,将原始的恶意代码转换成图像,并对其进行预处理。然后通过一个FA-SA模块提取重点特征,并通过两个FA-SeA模块捕捉像素之间的相关性特征。文章所提模型不仅简化了恶意代码检测的网络结构,还提升了深层次特征提取能力及检测准确率。实验结果表明,文章融合注意力模块的方法对提升模型的识别效果具有显著帮助。在Malimg数据集上,恶意代码识别准确率达到了96.38%,比现存基于CNN的模型提高了3.56%。
- 单位