摘要
本发明公开了一种基于深度学习的扶梯乘客危险行为识别方法,通过位于扶梯楼层板上方的摄像机拍摄含有乘客的扶梯视频段,使用目标检测、跟踪及关节点提取算法获得骨架序列,对骨架序列进行归一化、插帧处理制作数据集,同时将2S-AGCN网络进行改进以提高骨架关节点连接的合理性,增强模型拟合能力,以用于对骨架序列进行行为分类,并对训练集进行数据扩增后训练该网络模型,在测试阶段,使用插帧及归一化方法保证数据分布与训练集一致,且根据连续多帧的分类结果决定当前帧乘客的行为类别,最终得到稳定的扶梯乘客危险行为识别结果。本发明可以快速准确的判断扶梯上是否存在乘客出现危险行为,保护乘客的人身安全不受威胁。
- 单位