摘要
概率PLS(PPLS)模型中,数据源(主元)和噪声满足正态分布,容易受离群点的影响.鲁棒PPLS算法采用拖尾更长的t分布描述数据源和噪声,提高了模型的鲁棒性.但是,实际工业过程中,离群点由测量噪声导致,而不是由产生过程变量和质量变量的数据源产生.基于此,提出一种基于t分布噪声的鲁棒PPLS模型.该模型采用t分布拟合测量噪声的分布,而主元依然用标准正态分布描述,更符合实际测量状况.考虑到潜在变量的存在,采用极大似然方法结合EM算法对模型的参数进行了估计,并将该模型用于对过程变量和质量变量的回归估计.最后,通过仿真实例进行了验证.
- 单位