摘要
随着基于神经网络的算法在图像领域的不断发展,神经网络算法在行人再识别领域也逐渐成为主流的算法。目前,大多数神经网络算法常把网络的最后一层特征用于行人分类,而很少关注网络中间层输出的特征。另一方面,行人属性特征作为一个有效的局部特征,是神经网络提取特征的一个重要补充。基于Resnet50网络,结合网络中间层特征和行人属性特征,提出了一个新的行人再识别算法。在Market-1501和DukeMTMC-reID数据集上进行实验,实验结果表明,所提算法相较于目前主要算法,识别准确率有较大的提升。
-
单位上海大学; 通信与信息工程学院