摘要

为了精准、高效获得富水砂层渣土改良试验效果,以渗透系数、内摩擦角(改良前)、电阻率、泡沫剂浓度和膨润土浓度为输入变量,坍落度、渗透系数、内摩擦角(改良后)为输出变量,并基于24组富水砂层渣土改良数据,建立相关向量机(relevance vector machine, RVM)预测模型,将预测结果与反向传播(back propagation, BP)神经网络模型进行对比分析。结果表明:RVM模型在预测坍落度、渗透系数和内摩擦角时的平均误差分别为0.73%、0.38%和2.24%,优于BP神经网络模型的1.76%、4.53%和3.60%;通过计算皮尔逊相关系数,可知RVM预测值与实测值对应坍落度、渗透系数、内摩擦角的相关系数r分别为0.999 9、0.999 3和0.987 8,说明拟合程度极高。由此可见,RVM模型具有预测精度高、可靠性高的优点,为富水砂层渣土改良试验效果的预测提供一种新方法。

  • 单位
    建筑工程学院; 桂林理工大学; 广西岩土力学与工程重点实验室

全文