摘要

近几年,深度学习技术显著提高了单幅图像超分辨率重建(SISR)的性能,然而,基于深度学习技术的SISR算法存在模型参数量大、网络结构复杂、资源消耗多等问题。为了解决这些问题,提出一种基于空间特征交叉融合的轻量级图像超分辨率重建算法,该算法使用多个局部特征融合模块和特征交叉增强模块组成非线性映射单元,通过残差学习逐步聚合图像特征,提取更加精准的残差信息。同时采用对称结构将特征映射到两个分支,通过执行特征交叉,对应元素相乘提取高频成分,细化特征,增加网络非线性。在每个特征交叉增强模块中使用异构卷积代替标准卷积拆分和融合两条分支,有效地降低网络的参数量,使网络在参数量和性能之间达到相对平衡。通过一个多级集成模块增强不同阶段特征的相关性。在基准数据集上的实验表明,新的重建算法在降低模型参数量的同时,峰值信噪比和结构相似度均取得了较好的结果,而且重建图像的边缘结构完整,整体轮廓清晰,细节更加丰富。