摘要

城市有轨电车轨道障碍物的高精度、快速检测对保障城市有轨电车安全行驶具有重要意义。针对SSD算法检测轨道小目标障碍物精度较低的问题,提出了基于DA-SSD的城市有轨电车轨道小目标障碍物检测算法。在SSD目标检测算法的基础上,设计低层双段反卷积模块,丰富低层特征层的语义信息,增加自适应注意力机制模块,生成具有更强语义信息和精确位置信息的低层特征预测层,修正先验框生成方式,缩小各个特征层先验框的大小,增强轨道小目标障碍物检测的适应性。通过自制有轨电车轨道障碍物数据集进行训练与测试。结果表明:当Riou=0.6时,DA-SSD算法的MAP达到78.17%,检测速度为23.4 f/s,相比SSD算法,该算法在保持高速检测的前提下,提高了有轨电车小目标障碍物的检测精度。

全文