摘要
针对变压器绕组铁心机械故障诊断精度不足的问题,提出了一种基于改进自适应白噪声完整集成经验模态分解(ICEEMDAN)多尺度模糊熵(MFE)和多元宇宙优化算法优化核极限学习机(MVO-KELM)的变压器绕组铁心机械故障诊断方法。首先,为了避免虚假模态分量的产生,采用改进的ICEEMDAN对变压器原始振动信号进行分解。其次,利用Pearson相关系数法选取相关性最高的模态分量,并计算其MFE值。然后,将MFE值作为特征量构建特征数据集,并利用MVO优化KELM的核参数和正则化系数。最后,将特征数据集输入所建MVO-KELM模型进行分类识别,实现高准确率诊断目标。试验结果表明,所提方法具有优秀的诊断精度和稳定性,能够精确诊断变压器绕组铁心不同松动程度的故障,诊断准确率达到了99%以上,可为变压器现场检修策略的制定提供一定的指导。
-
单位河海大学; 电气学院