为实现对一定时期内旅客周转客流量进行有效预测,在分析RBF神经网络原理和铁路旅客周转量数据统计的基础上,结合时间序列归一化转化分析方法,建立基于RBF神经网络的铁路旅客周转量预测模型。选取2000—2013年实际的旅客周转量数据对神经网络模型进行训练,并用2014—2015年数据对模型精度进行可靠性检验。检验结果表明,RBF神经网络模型具有可靠的预测精度,可以有效地对铁路旅客周转量进行预测,从而更好地为铁路运输组织、站场线路设计等提供可靠的依据。