摘要
卷积神经网络模型作为音频特征提取器具有较好的应用效果,但该类模型的训练过程对数据量要求比较高。针对这一问题,本文提出一种基于双重数据增强策略的音频分类方法。首先采用传统音频数据增强方法(旋转、调音、变调、加噪),并将增强后的数据转化为语谱图,再采用随机均值替换法进行谱图增强。在此基础上训练InceptionResnetV2神经网络模型作为音频特征提取器,最后训练随机森林模型作为分类器完成音频分类任务。实验结果表明,与已有方法相比,采用双重数据增强策略可明显提升音频分类精度,并且训练出的特征提取模型具有较强的泛化能力。
-
单位智能信息处理与实时工业系统湖北省重点实验室; 武汉科技大学