摘要

针对现代空战中的无人机自主决策问题,将注意力机制(AM)与深度强化学习中的非确定性策略算法Soft Actor Critic(SAC)相结合,提出一种基于AM-SAC算法的机动决策算法。在1V1的作战背景下建立无人机3自由度运动模型和无人机近距空战模型,并利用敌我之间相对距离和相对方位角构建导弹攻击区模型。将AM引入SAC算法,构造权重网络,从而实现训练过程中奖励权重的动态调整并设计仿真实验。通过与SAC算法的对比以及在多个不同初始态势环境下的测试,验证了基于AM-SAC算法的机动决策算法具有更高的收敛速度和机动稳定性,在空战中有更好的表现,且适用于多种不同的作战场景。