摘要

针对当前相关滤波跟踪算法在抗背景干扰、响应融合方式以及模型更新策略上的不足,提出一种基于上下文感知与自适应响应融合的相关滤波跟踪算法.通过引入上下文感知技术,提高算法在背景杂波及遮挡等跟踪场景下的鲁棒性;通过研究HOG特征和颜色直方图特征二者响应图和响应值的特点,提出一种自适应响应融合方法,提升融合响应图的可靠性;在模型更新方面,采用了高置信度模型更新策略来减轻传统模型更新策略中模型污染及跟踪漂移的问题.实验结果表明,本文算法在OTB50数据集上达到了74.7%的跟踪精度,跟踪成功率为54.8%,均优于对比的主流相关滤波跟踪算法,并且在背景杂波、光照变化、遮挡、运动模糊等复杂跟踪场景中具有较好的跟踪精度与鲁棒性.