摘要

针对条件对抗神经网络(CGAN)只能进行真假不能进行分类判别和半监督对抗神经网络(SGAN)需要同时进行分类和真假判别的缺点,提出了一种改进对抗神经网络CSGAN模型,并给出了具体设计。该对抗网络的生成器G以CGAN为基础,由多层感知机(MLP)构成;判别器D以SGAN为基础,由卷积神经网络(CNN)构成。基于CSGAN,还提出了一种二维对抗神经网络轴承故障诊断方法,该方法首先将原始故障信号归一化到[-1,1]区间,然后利用一个滑窗从归一化数据中截取1024长度的数据,并转换构成32×32尺寸的二维矩阵作为CSGAN的输入。经多个公开数据集验证表明,这一诊断方法在不同样本比例的情况下都能有效提高判别器的诊断精度,具有良好的适用性。

  • 单位
    太原学院

全文