摘要

随着售电侧的逐步开发以及用电大数据时代的到来,短期负荷预测更加复杂,必须综合考虑实时电价、用户历史用电行为以及预测模型的精度和时间复杂度。在分析各种短期负荷影响因素的基础上,利用K-means聚类方法对用户历史用电行为进行聚类,再利用兼具有自动寻找隐层节点数和在线学习功能的I-OS-ELM学习机进行负荷预测。实例预测结果证明,该模型能够有效地解决实时电价机制下短期负荷的预测问题。