摘要
针对深度卷积神经网络训练时的网络退化、特征表达能力不强等问题,提出一种基于非负表示分类和多模态残差神经网络的肺部肿瘤(residual neural network-non negative representation classification, resnet-NRC)良恶性分类方法。使用迁移学习将预训练残差神经网络模型初始化参数;分别用CT、PET和PET/CT 3个模态的数据集训练残差神经网络,提取全连接层的特征向量;采用非负表示分类器(non-negative representation classification, NRC)对特征向量进行非负表示,求解非负系数矩阵;利用残差相似度进行肺部肿瘤良恶性分类。通过AlexNet、GoogleNet、ResNet-18/50/101模型进行对比试验,试验结果表明,ResNet-NRC分类效果优于其它模型,且特异性和灵敏度等各项评价指标也较高,该方法具有较好的鲁棒性和泛化能力。
- 单位