摘要
多目标进化算法在特征选择方面有显著的优势,但其求解高维数据最优特征子集的性能依然较差,且从获得的Pareto解集中选择合理最优解仍是一个挑战性的问题.为了解决该问题,提出一种基于自适应环境因子熵权决策的多目标特征选择算法.首先,通过设计环境因子来自适应识别关键特征,优化候选特征子空间;其次,将环境因子嵌入改进的交叉算子和变异算子,实现全局最优特征子集的自适应搜索;最后,利用关联环境因子的熵权决策策略,从获得的Pareto解集中选出最优解.实验表明,与现有的五种多目标特征选择算法相比,提出的算法具有更高的分类精度,并能准确地获取全局最优解,验证了该算法的有效性.
- 单位