摘要
针对辅助驾驶或自动驾驶领域车载图像的车辆压线检测问题,以及检测过程中由于欠曝、阴影或实体遮挡等因素导致的漏检、误检问题,提出基于改进Mask R-CNN与LaneNet的车辆压线检测算法。在网络优化方面,在Mask RCNN网络的基础上将RoI Align层的图像缩放算法(双线性插值)改进为双三次插值,将全连接层卷积化的VGG16网络取代LaneNet的E-Net共享解码器;在图像增强方面,改进Gamma校正算法以实现欠曝图像的自动校正;在训练数据方面,完成Tusimple数据集中车辆目标的标注并基于改进的随机擦除算法在网络训练过程中进行数据增强。实验结果表明:车辆检测速度保持不变的同时车道线检测速度提升了28%,车辆漏检率、误检率分别降低了38.93%,89.04%,车道线漏检率、误检率分别降低了67.21%,87.05%,算法的性能指标可满足车辆压线判断的应用需求。
-
单位中国科学院长春光学精密机械与物理研究所; 应用光学国家重点实验室; 中国科学院大学