摘要
为运用图像颜色特征估测作物的叶绿素含量,以自然环境下的小麦冠层图像为研究对象,提出一种基于熵权法的颜色特征选择方法,并应用机器学习方法建立小麦冠层叶绿素含量估测模型。熵权法通过信息熵来衡量颜色特征指标权重,实现冠层图像特征排序,机器学习方法选用多元线性回归(Multiple linear regression, MLR)、岭回归(Ridge regression, RR)和支持向量回归模型(Support vector regression, SVR)估测小麦冠层叶绿素含量。试验结果表明,与皮尔逊相关系数法和主成分分析法选取的特征集进行对比,熵权法得到a*、R-G-B、R-G、(a*+b*)/L、ab*、(R-G)/(R+G+B)、(R-B)/(R+B)、H/S、(R-G)/(R+G)等9个特征组成的特征集,可以利用较少的特征指标达到最优的预测效果。在选取相同特征指标参数的情况下,SVR的预测能力优于其它模型,其R2和RMSE的平均值分别为0.80、1.89,相比于MLR和RR模型R2分别提升2.8%、1.1%,RMSE分别下降0.13和0.05。将基于熵权法建立的SVR模型应用到2021年采集的小麦冠层图像数据,结果表明模型具有很好的稳定性。
-
单位石家庄学院; 河北农业大学