摘要
流程预测性监控通过对业务流程及其属性的预测,预防运行中的实例未来可能会面临的风险,从而及时干预流程。流程剩余时间预测是避免业务超时风险的一项预测任务,然而业务执行是动态的过程,可能会随时间或业务规模的增长而发生变化。这就要求预测模型能够持续更新以捕捉这些变化,同时要有足够的输入信息来区分变化前后的差异,并且预测模型应具有充分的拟合与泛化能力。针对上述问题,本文提出支持增量日志的流程剩余时间预测框架。具体而言,提出特征自选取策略,构建多特征预测模型,丰富预测任务的已知信息,将所得特征组合作为模型输入,提高预测模型的拟合能力。然后,将定期和定量作为模型更新的判断依据,提出定期更新、定量更新和综合更新三种增量更新机制。最后,基于六个真实事件日志,实现了三种不同的预测模型,模拟了增量更新过程。实验结果验证了本文所提方法的有效性,提高了流程剩余时间预测的准确率。
- 单位