将深度神经网络的多隐层特性融入在线序列极限学习机框架,提出代价敏感正则化有限记忆多隐层在线序列极限学习机,其中,代价敏感性由加权最小二乘法体现,有限记忆性通过及时丢弃过时旧数据体现。实验结果表明,加入了多隐层特性的在线序列极限学习机在图像识别准确率上比单隐层的在线序列极限学习机有所提升,在识别准确率的稳定性方面也比单隐层网络更出色。