摘要
本文用变分方法研究如下RN中包含0的有界光滑区域?上带非齐次扰动项和Hardy奇异项及Sobolev临界指数项的非线性双调和问题:■的非平凡解的存在性,其中n是??的单位外法向量,λ∈R, 0≤s≤4, N≥5,且2**=2N/(N-4)是H02(?)嵌入到Lp(?)的Sobolev临界指数,?2是重调和算子, f∈H0-2(?).本文在f的范数适当小且相关参数满足适当的条件时证明(*)至少有两个非平凡解.本文的主要结果将Tarantello (1992)关于调和方程的结果推广到了双调和方程,同时也将Deng和Wang (1999)的结果推广到了含Hardy奇异项的情形,更重要的是本文考虑了2≤s≤4的情形.
- 单位